Home
W&WW Blog Case Histories Books Shop Amazon  Member Survey Advertise
Buyer's Guide News Help Forum Ask Tom! Jobs Videos Newsletters

Search

News Center Links

 News Center Home

 
  Industry News
  Case Histories

More Links

  Industry Directory
 
Plants Directory
 
Video Center
 
This Week's Newsletter
 
Water Blog
 
Ask Tom! Archive
 
Trade Shows & Events
 
Industry Associations
 
Journals & Magazines
 
Tank Size Calculators
 
Add Your Plant Now
 
Add Your Company
 
Add Your Resume
 
Contact Us

Sign Up Free!

Click here to read past issues
Industry Newsletter

Enter your business email
address & click to sign up
Read Past Issues Here

Featured Book
From
Amazon

Click here for more

Free Shipping
on all orders over $25.

 
 
Industry News


Cleaning contaminated water – with Vinegar
By Simon Jenkins
Mar 11, 2009
  E-mail article
Printer friendly page
  .
Leeds, United Kingdom -- Engineers and environmental scientists at the University of Leeds are developing methods of helping contaminated water to clean itself by adding simple organic chemicals such as vinegar.

The harmful chromium compounds found in the groundwater at sites receiving waste from former textiles factories, smelters, and tanneries have been linked to cancer, and excessive exposure can lead to problems with the kidneys, liver, lungs and skin.

The research team, led by Dr Doug Stewart from the School of Civil Engineering and Dr Ian Burke from the School of Earth and Environment, has discovered that adding dilute acetic acid (vinegar) to the affected site stimulates the growth of naturally-occurring bacteria by providing an attractive food source. In turn, these bacteria then cleanse the affected area by altering the chemical make-up of the chromium compounds to make them harmless.

“The original industrial processes changed these chemicals to become soluble, which means they can easily leach into the groundwater and make it unsafe, says Dr Burke. “Our treatment method reconverts the oxidized chromate to a non-soluble state, which means it can be left safely in the ground without risk to the environment. As it is no longer ‘bio-available’ it doesn’t present any risk to the surrounding ecosystem.”

Chromate chemicals have previously been successfully treated in situ in neutral pH conditions, but this study is unique in that it concentrates on extremely alkaline conditions, which are potentially much more difficult to treat.

The current favored method of dealing with such groundwater contaminants is to remove the soil to landfill, which can be costly, both financially and in terms of energy usage. The Leeds methods being developed will allow treatment to take place on site, which is safer, more energy efficient and much cheaper.

Dr Stewart says: “Highly alkaline chromium-related contaminants were placed in inadequate landfill sites in the UK right up until production stopped in the 1970s – and in some countries production of large quantities of these chemicals still continues today. The soluble and toxic by-products from this waste can spread into groundwater, and ultimately into local rivers, and therefore will remain a risk to the environment as long as they are untreated.”

Current environmental regulations mean that before the team can test out its research findings in the field, they need water-tight proof that their methods can work, as it is illegal to introduce any substance into groundwater - even where it is contaminated - unless it has been shown to be beneficial.

“From the results we have so far I am certain that we can develop a viable treatment for former industrial sites where chromate compounds are a problem,” says Dr Stewart.

“Our next step is to further our understanding of the range of alkalinity over which our system can operate. As society becomes more environmentally aware, new regulations demand that past mistakes are rectified and carbon footprints are reduced. By designing a clean-up method that promotes the growth of naturally occurring bacteria without introducing or engineering new bacteria, we are effectively hitting every environmental target possible.”

The research, part funded by The Royal Society, is published online in the Journal of Ecological Engineering.

Source: http://www.leeds.ac.uk/



© Copyright 1998 - 2012 Water and Wastewater.com

Top of Page

 
Send news and case histories to:  news@waterandwastewater.com
 

 

I Search News I



I Live Newsfeed I

Increase traffic and add
content to your website
with our exclusive
newsfeed generator.

Our live newsfeed
allows you to
include news
headlines from our
News Center, right
on your homepage.

Headlines update in
real-time, automatically.

Click here to create
your own newsfeed!

 

 

 
 
I

Buyers Guide | News | Help Forum | Ask Tom! Column | Jobs | Resumes | Newsletters

W&WW Blog | Case Histories | Books | Shop Amazon | Member Survey | Advertise

.

Copyright © 1998-2011 Camber Southeast, Inc.
Web Site:  http://www.waterandwastewater.com
Privacy Statement

I
Home